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Received 7 March 1983, in final form 15 July 1983 

Abstract. The renormalised series technique is applied to two quantum mechanical prob- 
lems, the octically perturbed oscillator and the hydrogen Stark effect. Modification of the 
method is required for the latter problem; the results yield the Stark shifted energies and 
an estimate of the widths of the states studied. 

1. Introduction 

The renormalised series approach (Killingbeck 1981, Austin and Killingbeck 1982) 
has been found to be a useful technique for dealing with divergent perturbation series, 
particularly when combined with the use of Pad6 approximants (Austin and Killingbeck 
1982). 

In this paper the renormalised series technique is applied to two further quantum 
mechanical problems: the harmonic oscillator with an octic perturbation and the 
hydrogen Stark effect. The octically perturbed oscillator problem is of interest since 
the unrenormalised series violates one of the conditions for Pad6 summation, although 
it is of Stieltjes type (Graffi et a1 1971, Graffi and Grecchi 1978). The Stark problem 
is an example involving a system which has no bound states; direct summation of the 
perturbation series yields the real part of the resonance energy ERES = E -$r. The 
series also contains information about the width r (Silverstone et a1 1979, Drummond 
1981, Reinhardt 1982), but not in a directly accessible form. In § 3, it is shown that 
a modification of the renormalised series method allows an estimate of to be obtained, 
as well as good values of E. 

2. The octically perturbed oscillator 

2.1. The unrenormalised and renormalised series for the octically perturbed oscillator 

The Hamiltonian 

H = -02+ x 2 + , i x Z n  ( A  ’ 0 )  (2.1) 
is often used as a test case in perturbation theory. The energy perturbation series for 
this type of system has been shown (Simon 1970, Loeffel and Martin 1970) to take 
the form Eo+AS, where S is a series of Stieltjes, i.e. the terms of the energy series 
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have the form: 

Cfl = (-)" lom xfl n 2 1 ,  

where p ( x )  is non-decreasing. The applicability of PadC summation to series of Stieltjes 
is closely related to  the existence of a unique solution p ( x )  to  (2.2). From the study 
of the continued fraction representation of Stieltjes series, it has been proved (Wall 
1929, 1948) that the moment problem does not have a unique solution if the sum of 
the continued fraction coefficients converges. Under these conditions the [N + j /N]  
sequences of Pad6 approximants converge to different Stieltjes functions 

The Fj are bounded by the limits of the [N/N] and [ N -  1/N] sequences (Bender and 
Orszag 1978). 

For oscillator perturbation series, the continued fraction analysis has not been 
performed. It is known, however, that a sufficient (but not necessary) condition for a 
unique solution of the moment problem and convergenceof the Pad6 sequences to a 
common limit is that 

should diverge. This condition is obeyed for x2" perturbations m = 2, 3 but not for 
m > 3; the indeterminancy of the moment problem for m > 3 has been rigorously 
proved by Graffi and Grecchi (1978). 

In numerical work, it is of interest to investigate the differences between the 
[N+ 1/N] and [N/N] sequence limits. Although these sequences do not converge to 
a common limit, they may still be used to give bounds on the energy. (The energy 
series has the form a +AS where S is a series of Stieltjes, so [N + 1/N] and [N/N] 
replace [N/N] and [N- l /N]  in the previous discussion on bounds.) It is also of 
interest to compare results for the unrenormalised and renormalised series. (For the 
latter the series is not necessarily of Stieltjes form, so no convergence theorems are 
available.) 

The unrenormalised energy series for the ground state of the octically perturbed 
oscillator was calculated using the hypervirial method (Swenson and Danforth 1972, 
Killingbeck 1978a, b), as described in previous work (Austin 1980). The number of 
terms obtainable is limited by the strong (asymptotically (3n)!) divergence of the series 
coefficients. The series is strongly divergent, but the Pad6 approximants do converge 
for reasonably small A values; results are presented in table 1. For small A, the 
[N+ 1/N] and [N/N] sequences converge to a common limit, within the accuracy of 
the calculation. For larger A the [ N + l / N ]  and [N/N] provide upper and lower 
bounds as expected; these bounds move further apart and thus become less useful as 
A increases. To illustrate the gap between the limits reached by the [N/N] and 
[N+ 1/N] approximants the ratio [N/N]/[N+ 1/N] was studied as a function of N 
for various A values. For small A the ratio converges to a value close to unity; for 
larger A values the limit is considerably different from unity and decreases with 
increasing A. Similar results are found for the n = 1 and n = 2 state; of the perturbed 
oscillator. Table 2 shows typical results for two A values. For A =0.001 the ratio is 
close to unity and the Pad6 approximants are clearly providing reasonable upper and 
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Table 1. Comparison of results for the octically perturbed oscillator. [ N / N ]  and [ N +  l / N ]  
are the unrenormalised series results; [M/M]PLATEA" and [M + 1/M]p,A,EAU are results 
for the renormalised series. The [7/6],, were obtained by the method of Dmitrieva and 
Plindov (1980a, b); ,EEXACr values are those of Banerjee (1978), truncated to ten decimal 
places. 

10-5 
10-4 
10-3 
10-2 
lo-'  
10" 
10' 
102 
103 
104 
4X104 

2 1.000 065 5203 
12 1.000 646 3699 
16 1.005 85 1.005 86 
16 1.0387 1.41 
10 1.07 1.42 
10 1.08 5.0 
- -  - 
- -  - 
- -  - 

- 
16 
12 
12 
10 
- 
- 
- 

- 
1.005 8573 
1.039 
1.17 
1.7 
- 
- 
- 

- 
1.005 858 
1.0407 
1.19 
1.6 
- 
- 
- 

- 
1.005 864 
1.041 268 
1.187 902 
1.550 991 
2.238 098 
3.405 332 
5.307 470 
8.354 811 

11.003055 

1.000 065 5203 
1.000 646 3699 
1.005 857 5141 
1.039 496 7787 
1.168 970 8957 
1.491 019 8957 
2.1 14 544 6219 
3.188 654 3465 
4.949 487 4400 
7.718 272 2143 

10.238 868 2355 

Table 2. Values of the [ N +  1/N] and [N/N]  approximants and their ratio for the octically 
perturbed oscillator. 

0.001 1 
2 
3 
4 
5 

0.1 

1.005 6536 
1.005 8020 
1.005 8308 
1.005 8410 
1.005 8458 

1.038 4334 
1.051 4476 
1.058 2672 
1.062 5760 
1.065 5596 

1.005 9574 
1.005 8962 
1.005 8790 
1.005 8718 
1.005 8680 

1.516 2366 
1.467 6822 
1.442 2288 
1.426 2364 
1.415 1064 

0.999 6980 
0.999 9063 
0.999 9520 
0.999 9693 
0.999 9779 

0.684 8755 
0.716 4000 
0.733 7720 
0.745 0209 
0.752 9896 

lower bounds. For A =0.1, the ratio has converged to 0.75 and is clearly converging 
at a more rapid rate than the [ N + l / N ]  sequence and at a comparable rate to the 
[N/N] sequence. The known smooth convergence of the [ N +  1 /N]  and [N/N] to 
their respective limits should guarantee that the ratio, having converged to 0.75, will 
not diverge again. This technique of studying the convergence of the ratio of two 
quantities has been successfully applied in other types of quantum mechanical calcula- 
tions (Killingbeck 1983). 

The limiting factor in the study of this problem is the rapid growth of the terms 
of the energy series, which limits both the number of terms available and their precision. 
The present calculation was carried out using double precision; a higher precision and 
higher-order calculation would yield more information the gap between the sequence 
limits. It should be noted that, whilst Pad6 summation alone is of only limited utility, 
a combination of Pad6 and Bore1 summation techniques has been successfully applied 
to the octic oscillator perturbation series, giving good numerical results (Graffi and 
Grecchi 1978). 



3 70 E J A ustin 

The application of the Pad6 approximant technique to the ordinary perturbation 
series for the octically perturbed oscillator is thus limited. The renormalised Hamil- 
tonian 

(2.3) 

was also studied. The perturbation series remains strongly divergent, even for small 
A, so analysis of the partial series sums as in (Killingbeck 1981) was not possible. The 
Pad6 approximants, however, show a plateau as a function of K as found previously 
for the radial Stark problem (Austin and Killingbeck 1982). The results of these 
calculations are shown in table 1. The [ N / N ]  results are considerably better than the 
K = 0 results; the [ N +  1/N] are more variable. As well as the improved energies 
obtained by using the renormalised [ N I N ] ,  a feature of great interest is that the [ N / N ]  
and [ N +  1/N] plateau values are similar for larger A. There are no formal convergence 
theorems for the renormalised series, so it is not clear that there should be a gap 
between the [ N +  1/N] and [N/N] limits; clearly if such a gap exists, it is numerically 
smaller than for the unrenormalised series. This agreement indicates that correct 
eigenvalues are in fact being obtained from this ‘difficult’ series. The method fails, 
however, for A 3 2, no plateau being found. 

H = - o2 + ( 1 + K A  ) x2 + A ( x8 - K X ~ )  

2.2. Alternative series method for the octically perturbed oscillator 

Dmitrieva and Plindov (1979, 1980a, b) have introduced a transformed perturbation 
series for oscillator problems which resembles the renormalised series. Their work, 
however, involves both a coordinate scaling of the Hamiltonian and a transformation 
of the perturbation parameter. The transformed parameter allows the correct 
asymptotic behaviour of E ( A )  as A + 03 to be obtained, whilst retaining the usual $o 
as the unperturbed wavefunction. This method would thus be expected to be most 
effective at large A. 

For the octically perturbed oscillator, the transformations are: 

A = A ’ / ( l  -AA‘)’’‘ 

H‘ = -D*+ x2+  A ‘ ( x ~ - A x ~ )  E’ = ( I  - A A ’ ) ’ ’ ~ E  (2.4) 
where A = 4(xs)0/(x2)0; this choice allows $o to satisfy the virial theorem. 

H’ gives rise to a divergent series, of which the first fourteen terms were obtained. 
Results obtained from the [7/6] approximants are shown in table 1; the [6/6] results 
are less good. This calculation extends the very low-order results of Dmitrieva and 
Plindov (1979) and shows that remarkably good eigenvalues can be obtained over a 
wide A range. The calculation is, however, less accurate than for the quartically 
perturbed oscillator (Dmitrieva and Plindov 1980b); a calculation on the intermediate 
sextically perturbed oscillator would be of interest in this context. 

Comparison of the entries in table 1 shows that the renormalised series approach 
gives the best results for small A. The method described in this section, as expected, 
is poor for small A ,  but improves relative to the other methods as A increases; for 
large A it is the only successful technique involving summation of a perturbation series. 

3. The Stark effect 

The renormalised series approach works well for the radial Stark problem (Killingbeck 
1981, Austin and Killingbeck 1982); it is of interest to extend this work to the more 
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realistic Stark effect problem. The renormalised Hamiltonian is 

H = -1 2 V  - 2 -  ( l+KA)/ r+A(r+KA/r) .  (3.1) 

The Schrodinger equation for this problem can be separated in parabolic coordinates; 
the calculation of the perturbation series is as described by Austin (1980), with the 
inclusion of extra terms due to the KA/r part of the perturbation. Unfortunately, it 
is found for this problem that neither the partial series sums nor the Pad6 approximants 
show any sign of plateau behaviour. A similar effect is also found for the radial Stark 
problem with A < 0. This indicates that the breakdown of the method is related to the 
non-existence of bound states in both problems. It has been suggested (Austin and 
Killingbeck 1982) that as the effect of increasing the order of perturbation theory is 
analogous to increasing the number of basis functions in a variational calculation, 
results analogous to those of the stabilisation method (Hazi and Taylor 1970) should 
be obtainable. This would involve searching for a stable EPADE(N, K )  as a function 
of both N and K. This search was performed, but difficulties were found because the 
values of the Pad6 approximants fluctuate as N and K are varied and any stability 
found is no better than the unrenormalised series results. It has been pointed out by 
Reinhardt (1982) that there are mathematical grounds for expecting fluctuations as a 
function of N for K = 0, since the Pad6 approximants to the perturbation series have 
real-axis poles. Reinhardt notes that the range of such fluctuations is expected to be 
comparable to the width r of the state concerned. Assuming similar arguments apply 
to the renormalised series, in the present calculation the stabilisation phenomenon 
would be masked by these fluctuations. It therefore seems reasonable to proceed by 
combining the stabilisation idea with a version of the least squares technique (Killing- 
beck 1978b). The optimum value of E is found by searching for the value of K for 
which the terms of the sum 

show least fluctuation about their mean (as measured by the RMS deviation A ) ,  the 
sum being taken over the higher-order Pad6 approximants. 

Table 3 presents results obtained for the ground and n = 2 states of hydrogen. The 
averaging was performed by summing the [ N / N ]  from N = 0 to N = 16; the energies 
thus obtained are relatively insensitive to changes in the range of N values; the A 
values are more variable, but remain of the same order of magnitude. The optimum 
energies are seen to be in good agreement with calculations of other workers (Benassi 
and Grecchi 1980, Hehenberger et a1 1974, Cerjan et a1 1978, Damburg and Kolosov 
1976) and the range of validity of the perturbation approach has been extended to 
larger A values than for the unrenormalised series (Austin 1980), for example for the 
ground state from A =0.05 to A =0.12. In addition, as predicted, the value of A 
provides a reasonable estimate of r. 

The results obtained for the hydrogen ground state were compared with the results 
of a conventional least squares calculation using the trial function e-' + CYZ e-". Calcula- 
tions of this type give values of E and the RMS deviation A is thought (Killingbeck 
1978b) to provide an estimate of the width r, provided the trial function is appropriately 
chosen. The E values obtained from the renormalised series calculation are found to 
be more accurate than those obtained by the least squares technique. The A values 
of the least squares calculation considerably overestimate r (presumably due to the 



372 E J Austin 

Table 3. Results of renormalised series calculations for the Stark effect for four values of 
the parabolic quantum numbers. A is the minimum value found for the RMS deviation of 
X,!.f,,6 [ N / N ] ;  E is the corresponding mean. The E,, and r values were obtained from 
the following: (a' Benassi and Grecchi (1980), (b) Hehenberger et al (1974), ('' Cerjan et 
(1978), Id) Damburg and Kolosov (1976). 

Parabolic 
quantum numbers A E A E,, r 

"I "2 m 
0 0 0  
= 1s 

1 0 0  
=(2s-2p2) 

0 1 0  
=(2s+2pz) 

0 0 *l 
= 2Pm 2 P y  

0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 

0.004 
0.005 
0.008 
0.010 
0.015 
0.020 

0.004 
0.005 
0.008 
0.010 
0.015 

0.004 
0.005 
0.008 
0.010 

-0.503 772 
-0.506 076 
-0.509 205 
-0.513 250 
-0.517 121 
-0.522 215 
-0.526 333 
-0.536 196 
-0.542 484 

-0.114 305 30 
-0.112063 
-0.106 606 
-0.104 138 
-0.096 880 
-0.088 274 

-0.138 5518 
-0.142 608 
-0.155 666 
-0.166526 
-0.185 851 

-0.126 315 36 
-0.127 153 
-0.131 22 
-0.134 793 

2.8 X 

8.6 x 
4.2 x 1 0 - ~  
2.1 x 1 0 - ~  
2.8 x 1 0 - ~  
6.3 x 1 0 - ~  
1.1 x 10-2 
2.5 X 

4.6 X lo-' 

9.2 X lo-' 
4.5 x 10-6 
6.1 x 1 0 - ~  
3.2 x 1 0 - ~  
5 . 4 ~  10-3 
9 . 9 ~  1 0 - ~  

1.1 x 1 0 - ~  
6.6X 

8.6X 
1.4 X lo-' 
2.3 X 

2.2 x 10-6 
2.2 x 1 0 - ~  
4.5 x 1 0 - ~  
5.9 x 1 0 - ~  

-0.503 772'"' 
-0.506 1054'"' 
-0.509 2035'"' 
-0.5 13 0768'"' 
-0.517 5606'"' 
-0.522 4128'"' 
-0.527 4182'"' 
-0.532 45'b' 
-0.537 4'b' 

-0.114 3053'" 
-0.120 62t'd' 
-0.106 6684'" 
-0.103 89'd' 
-0.096 945'd' 
-0.088 941'd' 

-0.138 5488"' 
-0.142 62'd' 
-0.156 3768'" 
-0.166 09'd' 
-0.187 62'd' 

-0.126 3169"' 
-0.127 15'd' 
-0.131 1886'" 
-0.134 53'd' 

4.0 X 
7 . 8 ~  
5.2 x 
1.85 x 10-3'a) 
4.54 x 
8.78 x 
1.45 X 10-2'a' 
2.16 X 

2.99X 

1.4 x 10-~(c) 

8.5 x 1 0 - ~ ( ~ )  
3.28 x 

5.72 x 10-6'd' 

1.51 x 10-z(d) 
3.10X 

4.4 x 10-6'" 
1 . 0 6 ~  1 0 - ~ ( ~ )  
4.2 x 10-3'") 
1.09 X 

3.38 X 

8.1 x 10-~(c) 
2.62 x 10-51d) 
2.0 x 1 0 - ~ ' ~ )  
6.28 x 10-3(d) 

t This value believed to be in error (Cerjan 1982). Holt (1983) has obtained the value -0.1121 using the 
perturbation theory results of Alliluev and Malkin (1974). 

simple form of the trial function); the renormalised series in contrast provides good 
estimates of r, even though the calculation involves the use of only one parameter. 
It is clearly of interest to investigate other model problems involving resonance states 
to see if this is generally true; if so the renormalised series method could be used to  
confirm or check the results of least squares calculations. 

The renormalised series calculation is also of interest in providing a method of 
obtaining an approximate value of r from the perturbation series in a simple manner. 
Previous r calculations have used indirect methods, involving the large order behaviour 
of perturbation series coefficients (Silverstone et a! 1979) or complex-A techniques 
(Reinhardt 1982). These methods give more accurate results, but the direct method 
described here is certainly of interest; in particular order of magnitude estimates of r 
could be very useful in pinpoint the regions of the complex E plane to be searched 
in non-perturbative calculations. 
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4. Conclusion 

In this paper the application of the renormalised series technique to two problems of 
interest in quantum mechanics has been studied. The radius of convergence of the 
Pad6 approximants to the perturbation series for the octically perturbed oscillator is 
improved by this method; the large-A technique (Dmitrieva and Plindov 1979, 
1980a, b) is also found to be useful. The Stark effect problem is successfully treated 
by a modified renormalised series method; this has the advantage of yielding an estimate 
of the width r as well as the energy; in addition the radius of convergence of the Pad6 
approximants is increased. 
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